
International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 1

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

A Dynamic Construction Algorithm and
Verification of the Grafcet

Marcellin Nkenlifack, Emmanuel Tanyi and Janvier Nzeutchap

Abstract— This article proposes an approach of interactive construction of Grafcets. We especially studied the problem of the

research of a verification method and of holds it of the consistency, and we arrived to formulas and an algorithmic method of

interactive construction and progressive checking of this characteristic that we present. This algorithm has been implemented

and has been examined on convenient examples. The developed environment includes in more, a module of description and a

module of simulation. The object approach and the UML language have been put to profit during the process. We illustrate

functionalities of the simulator to specifics systems.

Index Terms— Hybrid Dynamic Systems, Algorithms, Verification, Simulation, Sequential Systems, Grafcet, Validation, Human-

Computer Interface.

—————————— ——————————

1 INTRODUCTION

He present methods of production are more and
more complexes in the industrial enterprises. They
undergo important technological transformations and

need in general on the computerization, in order to re-
duce to the strict minimum the physical stress as intellec-
tual of the man. This evolution is characterized by a spec-
tacular development of the programmed systems. Auto-
matic control systems are often modeled either as conti-
nuous systems (equations, transfer functions) or discret
systems (Grafcets, Petri Nets). In practice, however, most
industrial control systems incorporate both continuous
and discret elements. These so called hybrid systems have
recently become the subject of intensive research [1] [2]
[3] [4] [5] [6] [7]. The research on the automatic industrial
checking systems tackle to solve the following questions
[1] :

- The modelling
It is about having resort to a ―system approach‖ struc-

turing the different objects while taking into account the
physical sense and the causality of their interactions.

- The analysis
It assumes the development of tools of checking and

validation of the Hybrid Dynamic Systems (HDS), then
the mastery of the complexity of this analysis and the
physical interpretation of some qualities to analyze as the
global stability of the system through his consecutive
phases of performance.

- The Simulation
The present research concerning the methods and for-

mal tools relative to the analysis of the behavior of the

HDS and to the synthesis of the command laws are some
again to their beginnings [8].

The simulation remains therefore an obligated passage
when it is necessary to help towards the implementation
of an installation, to enable the model elaborated (in a
goal of forecast) for an existing installation, or to validate
the command conceived for an installation.

We are interested in the implementation of an envi-
ronment of verification of the Grafcets in construction.
This paper is a shutter of an a lot vast project on the set-
ting up of a modelling and simulation of the hybrid
process automations including the discret systems (de-
scribed by the Grafcets) and the continuous systems (de-
scribed by the differential equations), combining the
techniques of the software engineering and the control
engineering, and having been the object of several expe-
rimentations and subjects [2] [4] [5] [6] [7] [9] [10] [11]
[12].
Our paper that describes the implementation of a check-
ing environment and validation of the Grafcets in con-
struction, start with a brief presentation of the automatic
industrial control systems and the Grafcets, follow by the
modelling of the components, the specification of the cri-
terias of validation of the modules in construction and the
algorithmic design. After the techniques of implementa-
tion used, we illustrate the setting through the simulation
of the Grafcets of the command system of a mill.

2 THE AUTOMATIC INDUSTRIAL CONTROL SYSTEM

The different methods and tools (specification, analy-
sis, simulation) are numerous on the mathematical plan,
in control engineering and software engineering. Some
approaches and basic mathematical tools that can be op-
erated are described in [1] [13]: Theory of command, clas-
sified Command, Boolean algebra, Graph theory, Petri
networks (one of the forebears of the Grafcet), Statema-
chines or Statecharts.

T

————————————————

 M. Nkenlifack is member of LAIA Laboratory, IUT-FV, University of
Dschang, Cameroun , E-mail: marcellin.nkenlifack@gmail.com

 E. Tanyi is member of ACL Laboratory, National Polytechnic, University
of Yaounde 1, E-mail: emmantanyi@yahoo.com

 J. Nzeutchap is member of LITIS Laboratory, University of Rouen, France,
E-mail: janvier.nzeutchap@univ-rouen.fr

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 2

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

One distinguishes three approaches of description of
the Automatic Control Systems [1] [14] :

- The Discretes Systems (DS)
- The Continuous Systems (CS)
- The Hybrid Dynamic Systems (HDS) combining the

two first approaches.
The GRAFCET (in French ―Graphe Fonctionnel de

Commande Etape Transition‖) is a "language" of the con-
trol engineering, adapted to the description of automatic
systems. It is also a normalized tool [16], and functional
flowchart whose goal is to describe (graphically) the dif-
ferent behaviors of a sequential automatic system [15].

The Grafcet formalism has some constructs - STEPs,
TRANSITIONs, LINKs, ACTIONs, and TRANSITION
CONDITIONs -. Steps, denoted by numbered rectangles,
represent the steps in a sequence. Transitions, denoted by
horizontal bars, define the logical conditions which go-
vern the passage from one Step to another. Links are ver-
tical lines which interconnect Steps and Transitions. The
Actions, denoted by long rectangles connected to Steps,
define the operations performed by the actuators of the
system when the associated Steps become active.

It is necessary to note that today, a lot of researchs lean
on the Grafcet and try to improve it or to add some add-
on facilities there [1] [3] [6] [7] [12] [14] [17] [18].

The Grafcets are also a tool of functional specification
of some types of Hybrid Automatic Systems. As particu-
larity of the Hybrid Systems, one has the Interactions
(mutual action between parts of the System). The sequen-
tial-continuous Interactions is materialize to the level of
the Actions (Steps of the Grafcet). The continuous-
sequential Interactions recovered to the level of the Tran-
sition condition bound to the Transitions of the Grafcet.

An excerpt of the Rolling Mill Grafcet is shown in fig-
ure 1. The details of this Hybrid System are provided in
[3].

Fig. 1. An Excerpt from the Rolling Mill Grafcet (a hybrid system)

The problem studied in the article dedicates itself to
the interactive construction of a coherent specification of a
system. The Grafcet will be described on differents plans:
lexical (construction), syntactic (description), and seman-
tical (functional). To every time, one of the checking algo-
rithms is started to permit to alter the Grafcet. At the end,
it is simulated.

3 DEFINITION OF A CONTROL MODE OF THE

ALGORITHMS AND MODELLING OF THE

COMPONENTS

3.1 Conceptual survey of the constraints on the
Sequential Systems (Grafcet)

We haved specified several constraints regrouped by
types. In this article, we are going to quote some of it for
every category, as illustration. The reader can find the list
and details of all other constraints in [2].

• Technical constraints
- The constraints bound to the studied systems: example,

the C4 constraint determines the layout of the elements of
a Grafcet while imposing that the alternation Step-
Transition and Transition-Step is always respected.

- The constraints of programming: To the level of the de-
scription, C9 indicates that the crossing of a vertical di-
rected link with a horizontal directed link can be admit-
ted without it corresponds to a relation between these
links. To the level of the simulation, the C12 constraint
indicates that the evolution of the corresponding Grafcet
to the validation of a transition cannot occur until the
transition condition bound to this transition is true.

- The constraints of modelling: The constraint static struc-
tural C14 on the values of attributes and the cardinalities
indicates that a "parallel Link" will have a "number of
pathes > = 2" and that a "multiple Action" will have a
"number of applicable actions > = 2". The constraints of
uniqueness as C15 guarantee the unicity of the objects of a
class from the uniqueness of the values of an attribute or
a set of attributes of the class (example: a Step or a Transi-
tion may possess a unique number). The constraints of
inheritance as C16 restrict the possibilities of existence of
specialized objects (example: the exjunction is obligatory
between an unique link and a parallel link).

• Datas and elements which is manipulated
It is here about identifying the different phenomena of

our domain, susceptible to be represented by objects and
classes. We specified several score of classes of objects, all
listed in [2].

• Operations, events and processings
For every script, a set of operations has been specified

and modelized. One has several hundreds of them to the
total. For example:

- To represent or to describe the Grafcet, we will need
to draw the elements as the "Actions", the "Steps", the
"Transition conditions", the ―Transitions‖, the "Links", etc.
One will bind them the activities as Relocate, Replicate,
Delete, Modified, Mark, Find, Select …

- To simulate the Grafcet, we need the activities as Ac-
tivate and Deactivate any Step, to Examine the Transition
condition, to Enable and to Validate any Transition, to Ex-
ecute one or several Actions, to Execute the Actions in way of
other systems.

Start induction motor

1

Set roll gap to maximum value

 Motor speed = 18 revs/ s

2

(1)

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 3

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

3.2 Object-Oriented Modeling of Grafcets and
Interactions

With the UML language [19], we have modelized in
general all points of view of a sequentials systems, what
made several score of diagrams [2]. Only some will be
presented in this article. The Use-case diagram (figure 2)
represents the functions of our system and gives the
views that the users have to the system activity.

Fig. 2. "Use-cage diagram" of the sequential systems and interac-
tions with the continuous systems

Each Grafcet is part of a system which is defined as a
schematic diagram. The simulation of the Grafcet pro-
vides information on its functional behavior. The top-
level objects in the model base, thus, include SCHEMAT-
IC, GRAFCET and SIMULATION. The basic class dia-
gram of sequentials systems is presented at figure 3.

Fig. 3. Basic class diagram of sequentials systems

These top-level objects were successively decomposed
into other lower-level objects to obtain the class hierarchy
(inheritance and composition) shown in figure 4. The de-
scription of all attributes of the different classes (static
attributes and methods) is made in [2].

3.3 Interactions

Interactions are included in each sub-system. They are
modeled by four object classes, two for sequential and
two for continuous systems. The class ACTONSYS (Ac-
tion applied on continuous system) contains attributes
and functions which enable a sequential element to apply
actions on a continuous system. The class ACTFROMSYS
(Action from a sequential system) contains attributes and
functions which enable a continuous system to apply an
action initiated by a sequential element. The class TRA-
NONSYS contains attributes and functions which enable
a transition condition in a Grafcet to be assigned a value
by a continuous element. The class TRANFROMSYS
(transition resulting from a continuous system) contains
attributes and functions which enable a continuous ele-
ment to assign a value to a transition condition in a Graf-
cet. The objects ACTONSYS and ACTFROMSYS define
the source (cause) and destination (effect) of a sequential-
continuous interaction. TRANFROMSYS and TRANON-
SYS define the source and destination of a continuous-
sequential interaction. The objects TRANFROMSYS and
ACTONSYS are shown in figure 4.

Fig. 4. Hierarchy of Classes for Sequential Systems

GRAFCET

STEP ACTION TRANSITION TRAN.CONDITION LINK

COMPONENT

SEQUENTIAL
SYSTEM

Grafcet

use

Execute ()

Simple Action

Test () Tran-

sit.Cond

Validate ()

Transit.Cond.
Test () Logical

Transit.Cond.

A
c
t
i
v
e
r

(
)

l
’
é
t
a
p
e

Action on the button

Simulation

Execute () Macro-

Action

Simulate

use

use

 use

use

use

extend

extend

extend

Test () Transit.

Cond.Interaction

extend

Activate () Step

Disactivate

() Step

Validate ()

Transition

Execute ()

Action

1
link
s

c
o
n
d
itio

n

D
es

cr
ib

es

STEP
TRANSITION

ACTION

TRANCOND

ACTONSYS

LINK

LINK SELECTOR

PARALLEL LINK

SINGLE LINK

TRANFROMSYS

SIMPLE

ACTION

ACTION MULTIPLE

B
el

on
gs

 to

LOGICTRANCOND

TEMPTRANCOND

ACT. DETAILED

 SEQUENTIAL

SYSTEM

1

0..*

D
es

cr
ib

ed
 b

y

GRAFCET

1..*

0..1
0..1

1..*

1..* 0..*
0..*

1..*

 GRAFCET

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 4

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

3.4 When does need to verify the components of
the Grafcet who are created?

After the analysis, two cases are foreseeable:
- One only permits the creation of valid components.

Thus, all attempt of creation of a component of which the
layout with the existing components would cause incohe-
rence in the global schema fails: the component is not
created in this case.

- One allows the "in bulk" creation of a set of compo-
nents (linked or no), and one doesn't perform the check
that when a component comes to be bound assembly-line
starter of the initial component (Step initial zero).

We adopt the second solution that doesn't impose a too
big rigor on behalf of the user, permitting more flexibility
thus in the constructions. Otherwise, we also suggest the
automatic creation (drawing) of an initial Step number
zero (0) every time the user chooses to begin a new Graf-
cet. The one is not here deletable by the user and will act
as source to identify the components already linked,
therefore controlled, of those not making even gone of the
Grafcet, although present in the window of description.

3.5 Stated of the principle of creation of the
components

A progressive verification algorithm assumes the pos-
sibility to verify every component individually, at the
time of an attempt of creation. Thus, every new compo-
nent will be created temporarily in memory. If the user
wishes to bind it already in the correct Grafcet, then the
component is checked. If it is in harmony with the exist-
ing schema, the program connects it to the other compo-
nents of the chain (that is to say in the Grafcet), otherwise
the attempt of creation is annulled by a trouble report
indicating the nature of the incoherence, and the compo-
nent is suppressed of the memory. On the other hand, a
created component and non linked in the Grafcet by the
user will be marked "unchecked" and considered like not
being part of the Grafcet. The user will be able to then
either to suppress it, either to relocate it toward another
position. Verification is performed at the end of this dis-
placement. Nevertheless, at the end of the construction of
the Grafcet, the program will propose to automatically
suppress the created components and non linked to the
main schema.

4 CONCEPTUAL SPECIFICATION OF THE CRITERIAS

OF VALIDATION OF THE MODULES IN THE

CONSTRUCTION

We enumerated in [2] [6], a certain number of criterias
that the set of combined elements must respect. These
criterias define for every type of component (STEP, AC-
TION, TRANSITION, TRANSITION CONDITION,
LINK), the nature of the components to which this one
can be bound up-stream or down-stream.

To permit the correct checking of these constraints, we
have in our basic class model, in the global class "COM-

PONENT", define an attribute "Previous" that permits to
know what components are directly above the concerned
component, an attribute ―Next‖ which is a list permitting
to get all components directly connected to a down-
stream component, a "Left" and a "Right" attributes, per-
mitting to know what components respectively has been
bound directly to the current component in his Left or in
his Right.

We will use these attributes to perform the verification.
The verification will be in a first time specified for every
category of components, then we will describe the algo-
rithm of construction of the Grafcet that will call on the
algorithms of individual check of the components, every
time that a new component will be under creation.

- The notions of ―Left‖, ―Right‖, ―Previous‖ and
―Next‖ don't correspond to physical positions in the win-
dow of construction. It is more about a concept bound to
the internal organization of the Grafcet. A component can
be placed below another in the window of construction,
and to be considered yet as the "Previous" of this one.

- To establish these criterias of validity, it would be in-
dicated to make a schematic representation of the possible
cases by type of components. Let's note that it will be dif-
ficult enough here of to enumerate all possible cases. We
choose some for this article.

4.1 Notion of loop of a component

We say that components are looped if it is possible to
revert on the same component while covering the Grafcet
during the simulation of the system, while only crossing
the Next one of the elements met. The figure 5 is an ex-
ample of illustration of the loop notion.

Fig. 5. Illustration of the loop notion

What interests us when a loop is created, are the ele-
ments of ―Start‖ and ―End‖. It allows us to verify the fol-
lowing constraints:

- if the "Start" is a Transition, then the "End" must be a
Step.

ACTION 1

2

T2

E1

L
1

3

- All elements in continuous lines are looped

- Tthe elements in interrupted lines are not looped

- The Transition (T2) and the Step (E1) in bold are respectively the "Start" and

the "End" of the created loop

- The curve oriented in dotted lines indicating the sense of creation of the compo-

nents, one will notice that it is the creation of the link (L) that generates the loop

of a loop.

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 5

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

- if the "Start" is a Step, then the "End" must be a Tran-
sition.

No other configuration of loop is admitted.
In general, it is the creation of a new Link that gene-

rates the possibility of existence of a loop. Thus, the test of
existence of loop will be performed to the creation (by an
user) of every new Link. Thus, the algorithm of verifica-
tion of a component will call on the algorithm of check of
"loop" for this component.

As having presented the notion of loop, we are going
to enter the different configurations that we could have
during the construction of the modules.

4.2 Case of a Step

For a Step, we counted some of the situations capable
to occur. They are presented to the figure 6.

One can carry therefore that:
- The element ―Right‖ of a Step always exists, is

unique and is a Link toward an Action. Unusually,
this element is not obligatory for the case of an ini-
tial Step or a final Step for which the system is
pending or to the pause (stop).

- The ―Next‖ of a Step always exists, is unique and
can be a Transition (when the Step is bound direct-
ly to his transition of exit) or a Single-Link, when
the Step is bound to a Transition by a succession of
links (constrained linked to the available drawing
space in the window of construction). Exception,
this element doesn't exist for a final Step, last Step
(stop) of the Grafcet.

- The ―Previous‖ of a Step always exists, is unique
and can be a Transition (when the Step is bound
directly to his transition of entry) or a single Link.
Nevertheless, this element doesn't exist for the
case of an initial Step.

- The ―Left‖ of a Step, when it exists, is a Link com-
ing from a chain of links. It can have of it several
of them when the Step is "looped" several times.

Fig. 6. Checking of the Grafcet: Some possible situations for a Step,
during the construction

4.3 Case of an Action

The ―Previous‖ of an Action always exists and is a Sin-
gle-Link toward a Step. Its ―Next‖, ―Left‖ and ―Right‖
doesn't exist.

4.4 Case of a Transition

In addition to the previous configurations, one can
count the few supplementary cases of the figure 7 :

Fig. 7. Verification of the Grafcet: Some possible cases for a Transi-
tion, during the construction

One can carry that:
- The "Previous" of a Transition always exists and

can be a Step or a Link (Single or Parallel). In the
same way for the ―Next‖ one of a Transition.

- If the "Previous" of a Transition is a Link, and pos-
sess several "Previous", then this Link must be a
Parallel-Link-Sequence. This check will be per-
formed on the Link.

- In the same way if the ―Next‖ of a Transition is a
Link and possess several Next one. Once besides,
this check will be performed on the Link.

- The ―Left‖ of a Transition when it exists is a Link
(Simple or Oriented). It can have several of them
when the Transition is "looped" several times.

- The ―Right‖ of a Transition when it exists is a Link
(Simple or Oriented). It can have several of them
when the Transition is "looped" several times.

4.5 Case of a Transition Condition

A Transition-Condition doesn't possess "Previous", nor
―Next‖, nor "Left", nor "Right" element. It is not physical-
ly linked to any component in the window of construc-
tion. But in the internal structure of the Grafcet, It is asso-
ciated with an Action and a Transition. It is sufficient to
place it enough close to this Transition in the window of
construction then to put this association in evidence.

4.6 Case of a Link

The particularity of the Links is that they can be bound
at any other component. The ―Previous‖ and the ―Next‖
of a Link always exists and is unique. The ―Left‖ and the
―Right‖ of a Link (Simple or Directed Link) when they
exist are Simple or Directed Links. It can have of it several
of them when the Link is "looped" several times.

5 PRESENTATION OF THE ALGORITHMS DESIGNED

The algorithms that we propose correspond precisely
to the class model and to the constraints as stated or defi-
nite previously.

5.1 Algorithm of “loop check”

This algorithm will be applied in priority to the com-
ponents of type "Link" because these last are those sus-
ceptible to generate a loop in a Grafcet. It uses the follow-
ing algorithms:

- Algorithm of determination of the "Start" element of a
Link: Permits to know the component that uses a Link to
connect to another component in the Grafcet;

- Algorithm of determination of the ―End‖ element of a
Link: it is the first element different of a Link situated

n ACTION n

n

n

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 6

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

downstream this Link in the construction;
- Algorithm of determination and checking if a com-

ponent comes after another in the Grafcet. This algorithm
is not the one of recognition of the element or elements
following immediate of a component. It has for goal to
determine if while leaving from the C1 component in the
Grafcet, one can arrive to the C2 component while only
covering the Next one of the components met. This algo-
rithm is "recursive". Indeed, to determine if C2 comes
after C1, one determines successively if C2 comes after
every immediate Next one of C1. It is a sub-algorithm
very determinant that will serve to verify if the "Start" of a
loop comes after the "End" of this loop.

During the research of the "Start" and "End" of a Link,
a variable is use to count the number of valid Directed
Links met. The validity test of a Directed link is per-
formed as soon as this Link is connected to another com-
ponent in the Grafcet. We won't specify his algorithm
here. Also, a loop must comprise at least one Directed
link to indicate the sense of runaround of the loop.

Skeleton of the algorithm of loop check :
This algorithm permits to determine if a link (L) generates a

loop in the Grafcet.
D L.depart() ; // call Algorithm of research of the Start of the link

A L.arrivee() ; // call Algorithm of research of the End of the link

n nLiaosonsOrienteesTotalRencontrées ;
Si (D = NULL OU A = NULL) Alors resultat = lienNonBouclé // isolated or partially
isolated link
Sinon

Si D vientAprès(A) Alors
Si n = 0 Alors // component looped but without directed link: mistake
 messageErreur("transformer un lien en une Liaison Orientée") ;
Sinon
Si (D.type() = Transition ET A.type() = Etape) OU
 (D.type() = Action ET A.type() = Transition)
Alors resultat = lienBouclé ;
Sinon messageErreur("mauvais type de boucle") ;
Fin si
Sinon

Si n 0 Alors messageErreur("supprimer la Liason Orientée")
 resultat = LienNonBouclé ;
Fin si

Fin si

Fin test de bouclage.

5.2 Algorithm of validity checking of a component

In the beginning, one initialize to zero (0) the number-
ing of components (they follow a numbering). When a
component is enabled, if it must be numbered, then his
number is automatically gotten while incrementing to 1
the number of the previous component (in the same way
type). What allows us to have the following schema:

numEtapeCourant 0 ; numTransitionCourant 0 ; etc.
Algorithm of check of a Step: Determine if an element of

type "Step" is bound correctly in the internal structure of the

Grafcet.

Algorithm of check of a Transition: Determine if an ele-

ment "Transition" is bound correctly in the internal structure of

Grafcet.

Algorithms of check of an Action and a Transition-

Condition: Determine if the elements of type "Action" or "Tran-

sition-Condition" are bound correctly.

We didn't judge useful to present these different algo-
rithms in detail in this article, for reasons of space.

Remarks :
- During the implementation, we should insert in all

these algorithms of check, except for the case of the first
initial Step and Transition-Condition, the condition :

"if Previous = NULL Then Result = Invalid component"

because all components, except the first initial Step,
possesses a Previous component.

In the same way, except for the final Step and the Ac-
tions, the condition (because all components possesses a
following component) :

"if Next = NULL Then Result = Invalid component"

We will implement the test of uniqueness check when
it is necessary. In fact, a component of which a necessary
attribute is absent, will be considered temporarily like
Valid and won't be declared Invalid at the end of the con-
struction if this attribute remains absent. Thus, an inter-
mediate Step (not initial or final) not having an associated
action is considered like Valid. If the user declares the stop
of the description of his Grafcet to this moment, then this
Step becomes Invalid and the "disjointed" Grafcet.

5.3 Algorithm of construction of the Grafcet

To enlarge the comfort of usage of the application, the
construction will be an "Assisted Construction", because
the user will be helped in his gait. Thus, when he will
choose to begin the construction of a new Grafcet, a virgin
page will be open on which will be placed a Step zero
representing the first initial Step of the system. This first
component is important in the schema of the Grafcet. In-
deed, it is the indicator of beginning of the chain of the
integrated components on the window of construction
and being part of the Grafcet effectively. The components
that are not aligned to this chain are all the same create,
but thereafter they are not controled and remain so much
unknown that one doesn't relocate them to connected
them to a component of the chain. They are controled
then as one wants to bind them assembly-line. Thus, in
the window of construction, one will have the Grafcet in
construction, and a set of components "scattered" that one
will be able to add to the Grafcet to the moment and
Right side up appropriate, either to suppress it once the
construction of the Grafcet finished.

Every time that the user creates a new component, one
of the elements ―Left‖, ―Right‖, ―Next‖ are suggested by
default and possibly linked to the one here to reduce the
time. Thus, when you create a new Step, a Link on the
Right toward an Action as well as a Transition are auto-
matically created and associated to the created Step. If
these suggestions don't satisfy you, you can always select
these and suppress them to put yours instead.

The "code" of the recursive algorithm of actual con-
struction of the Grafcet, is provided in [2] (it is called
when the user enables the File->New command of the
Application):

The selection, the unselection, the deletion and the

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 7

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

displacement of the components will be assured by the
"Event-Listener‖(Java language [20]) linked to the compo-
nent during his creation. The algorithm of construction
uses implicitly this Listener which cannot be described
here.

5.4 Test of the incoherences generated when one
adds a component

It is important and necessary to examine all elements
preceding a component until the first initial Step again
(Step 0), when the one is created here. Indeed, the crea-
tion of a component yet valid can generate incoherence in
another link very distant of this last in the Grafcet. We
illustrate it by the example of the figure 8.

Fig. 8. Illustration of the necessity to control the components again
after evry link

Comments on the figure 8:
Gone of a Step (1), one joins him successively, one after

the other, the simple links. At the end, if one joins another
Step, then two cases are possible:

- one considers that only the Step of departure be-
comes disjointed

- or then one considers that only this last Step is dis-
jointed, all others components remaining valid.

It is why the creation of a new component must entail
a new test of all his precedents until the Step initial zero
of the Grafcet.

At the end of the construction, all components are ex-
amined again, one after the other for a bigger reliability.
In fact, the reliability of the result of the verification is
bound to the number of time that every component is
examined during the construction of the Grafcet. More
this number is big, more the Grafcet is coherent. It seems
to enlarge the time of construction of the Grafcet, but one
must weigh the equalization brought by the big reliability
of the system thus gotten.

5.5 Algorithm of link of an isolated component in
the Grafcet

Since in the window of drawing, one has the linked
components being already part of the Grafcet in construc-
tion, as well as of the components even integrated to the
Grafcet, and that will be him subsequently or will be sup-
pressed then. The algorithm that we propose here (used
by the algorithm of construction of the Grafcet) permits to
bind one of these components in the Grafcet so possible
therefore when the user wishes (either when he selects
two components of which a non linked component, or
then if he relocates a non linked component up to bind it

physically to already linked component).

5.6 Algorithm of simulation of the Grafcets

In the Grafcet module, we have a general function
(process) that permits to cover the different objects of the
Grafcet, activating the Steps whose previous Transitions
are validated and deactivating the Steps whose following
Transitions are valid.

Function parcours_recursif (Vecteur vectetape, Vecteur vectransition)
Debut
/* Vectors containing respectively active Steps and the valid transitions */
 Vecteur vecstapestampon, vectranstampon;
/* vector contains the Steps whose Previous transitions are validated */
Vecteur vectetape_suiv;
/* In this vector, one keep the active Steps */
 vecstapestampon=recherche_etapes_actives(vectetape);
 /* In this vector, one stocks the transitions whose Previous Steps are active,

this in order to enable them and possibly to validate them */
vectranstampon=recherche_transitions_etapes_actives(vectransition, vecs-

tapestampon);
/* Stop condition of the recursive function. In fact, if it has no transition to

enable, it is that one achieved the end of a Grafcet */
Si (vectranstampon.taille()!=0)
debut
/* Enable the transitions whose Previous Steps are active */
 valider_toutes_transition (vectranstampon);
/* clears the valid transitions and whose associated receptiveness is true */
.franchir (vecstapes,vectetape,vectrans);
/* Deactivate the Steps whose following transitions are validated */
 desactiver (vecstapes,vectetape,vectransition);
 vectetape_suiv=recherche_etapes_a_activer(vectetape,vectrans);
 activer_etapes (vectetape_suiv,vectetape);
 .reinitialiser (vectranstampon,vectransition);
 parcours_recursif (vectetape,vectransition);
fin
sinon
/*deactivate actives Steps when there are no more transitions to enable*/
 Desactiver (vecstapestampon,vectetape);
 Finsi

 Fin

This routine will be called in the “simulate” method of the

Grafcet, presented below:
 Methode simulate (Vecteur vectetape,Vecteur vectransition)

 {
vect=parcours_etape_init(vectetape) ;
activer_etapes_initiales(vectetape);
parcours_recursif(vectetape,vectransition);

 }

6 IMPLEMENTATION AND RESULTS

The simulation platform, referred to by its French
acronym SAHY (―Simulateur des Automatismes HY-
brides‖), was modeling with UML and implemented in
JAVA – a multithreading, portable and dynamic language
[20]. The general plateform includes a simulator of Graf-
cet, a simulator of equations and a graphic interface of
construction and description. During the implementation,
close reference was made to the UML model base to en-
sure that the objects and object classes created reflected
the required structure. The programming of the hybrid
simulator was based on the use of Thread packages to
create processes in JAVA. This technique enables multiple
processes to be executed concurrently within the same

1 1

1

1

1

 2

1

 ACTION

INCOHERENCE

COHERENCE

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 8

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

environment. A process was implemented for the Grafcet
simulator and another one for the equation simulator.

The simulation of the Sequential systems (Grafcets)
consists in representing the evolution of the different
Steps of the Grafcet progressively, while respecting the
features of the parameters provided by the user, and the
sequence of activation of its Steps. An active Step is hig-
hlighted by displaying it in color and placing a dot inside
the step symbol. This Step will resume its normal color
and the point will disappear, when it will be inactive.

 Continuous systems are simulated by displaying
graphs of output variables and tables of performance in-
dices such as response time, steady-state accuracy and
stability margin.

6.1 Logical Specification of attributes, events and
processings of packages and classes of
systems to construct

While coming closer maximally of the reality, the logi-
cal gait draws in our real environment while formalizing
the representation of the introverted knowledge maximal-
ly. Our approche helps the programmer in his tasks of
complete implementation. We were inspired by the used
approach in [21].

To respect the full rigor of the Software engineering in
order to put in place a progressive and maintenable sys-
tem, we clearly specified in a textual way the set work
while putting in evidence the events, the messages and
the anticipated triggering. This important stage preceded
the final implementation.

Several score of classes have been described. The read-
er will have a complete visibility of these project and the
consequent experimentations while consulting the differ-
ent articles there relative [2] [4] [5] [6] [7] [9] [10] [11] [12].

Due to space limitation, only the skeleton of code for
the object class STEP is presented here.

Public class STEP

//Attributes

 Num : integer // step number

 x,y,cote : integer //screen co-ordinates

 etat : boolean // status of the step : active/inactive

 Description : String // description of function of the step

 Type : Boolean // TRUE for initial steps, FALSE for ordinary steps

 vec_act_assoc : Vector // List of Actions associated with the step.

//Methods

 public void Draw() //draws step.

 public void InputElement()

 public void OutputElement()

 public void Activate() // places a dot inside the step symbol.

 public void Disactivate()

 public void Zoom() // magnifies or reduces a transition by a specified

scale.

 public void move() // displaces a transition to a new position on the

screen.

 public Step find()

 public Vector copy() // copies an object of type step.

 public void modifyAttribute()

 public void compile() //checks if there are links before and after the tran-

sition. If this is not so, an error message is displayed.

End.

6.2 Application to the Construction and
Description of the Grafcet of the Mill

The Rolling Mill is a typical industrial hybrid control
system. The system converts metallic blocks to sheets. The
Programmable Logic Controller (PLC) is the sequential
sub-system. It implements the sequence logic for control-
ling the sequence of operations : a metallic block is heated
to a specified temperature ; the gap between the rolls is
adjusted to admit the block ; the block is inserted into the
rolls ; the induction motor drives the rolls at constant
speed until the roll gap is reduced to a specified value ;
the sheet produced is removed from the rolls and the se-
quence repeats. The sequence logic is implemented in
Grafcet.

The construction, the description and the simulation of
the Mill have been performed completely. The figures 9,
10 and 11 describe the beginning of the parameterization
of the Grafcet.

Fig. 9. Sequential system parameter definition screen

Fig. 10. Components placed in cascade during the construction

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 9

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Fig. 11. Parameterization of Action selected during the description

Figure 12 shows part of the Rolling Mill Grafcet. The

screen used in describing interactions is shown in figure 13.

The Action-interaction invoked (figure 13) calls the me-
thods (functions) of reading of the parameters of the dif-
ferential equation and of the order (it is depending of the
type of chosen interaction).

Fig. 12. Macro step parameter definition screen

6.3 Simulation of the Grafcet of the Mill

The Rolling Mill was simulated by creating icons for
the various components of the system, designing the
Grafcet of the system and defining the equations of the
continuous part of the system.

To the departure, the continuous variables are fixed to
their initial values (conditions), then the simulation is
activated. We present in figure 14 the simulaton Grafcet
of the evolution of the reversible lamination process.

It is necessary to note that every time one has synchro-
nization between the evolution of the Grafcet and the one
of the different curves to the various phases of the hybrid
simulation. The technique of synchronization used here is
explained in details in [2].

Parameterization of an Interaction-Action

Parameterization of the Exclusive sequence Link

Fig. 13. Parameterization of the macro-actions of the Mill

Fig. 14. Simulation of a Reversible Lamination with 5 passages

7 CONCLUSION

An Object-oriented construction, description and simu-

lation platform for Grafects has been presented. The plat-

form is designed in UML and implemented in Java.

International Journal of Scientific & Engineering Research Volume 2, Issue 9, September-2011 10

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

We conceived and achieved an algorithm taking in ac-

count the problem of the research of a consistency verifi-

cation process, and we arrived to formulas and a "algo-

rithmic method" of construction and the simulation of the

Grafcet in an interactive way. The algorithms, the tech-

niques, the models and programs presented have been

applied to some sequential and hybrid system examples

in order to put in evidence their efficiency and the advan-

tages that one pulls of it. The "software" result of this

project is a platform possessing various environments of

functional "visual display" of hybrid ―components‖, and

takes counts the main constraints of quality defined by

the standards of the software engineering ([22] [23] [24])

of it.

Further research will focus on two aspects of the

project:

- An Extension of the simulator to include interactive

compilation of the Grafcet during model construction.

- A survey more retailed of the semantics of the Grafcet
construct.

REFERENCES

[1] J. Zaytoon, Systèmes Dynamiques Hybrides, Traité Systèmes auto-

matisés, Information Commande et Communication, Hermes, Paris,

2001.

[2] M. Nkenlifack, "Modélisation objet et développement d’un atelier de

simulation des automatismes industriels hybrides", Thèse de Docto-

rat de l’Ecole Polytechnique (Université de Yaoundé 1), Cameroun,

2004.

[3] E. Tanyi and D. Linkens, ―A G2 based Hybrid Modeling and simula-

tion strategy and its Application to a Rolling Mill‖, Control Engineer-

ing Practice, London, 1998.

[4] E. Tanyi and M. Nkenlifack, "Une Adaptation d’UML à la Modélisa-

tion des Systèmes Hybrides", Revue des Sciences et Technologies de

l’Automatique, Volume 7, N°2 - 2ème semestre 2010, pp 46-57, ISSN

1954-3522.

[5] M. Nkenlifack, E. Tanyi and F. Fokou, ―Amelioration of the HAD

Metamodel for the Modelling of Complex Hybrid Systems‖, Interna-

tional Journal of Advances Research in Computer Science, Volume 2,

No. 1, Jan-Feb 2011, pp 370-380, available online at

http://www.ijarcs.info, ISSN 0976 - 5697.

[6] M. Nkenlifack, E. Tanyi and F. Fokou, ―Establishing bridges between

UML, HAD and GRAFCET Metamodels for the Modelling of Dy-

namic Systems‖, International Journal of Scientific and Engineering

Research, Volume 2, Issue 3, March 2011, pp 1 - 12, available online at

http://www.ijser.org, ISSN 2229-5518.

[7] E. Tanyi and M. Nkenlifack, "Modélisation Unifiée Hybride et Simu-

lation des Systèmes de Contrôle", Revue des Sciences et Technologies

de l’Automatique, Volume 8, N°1 - Premier semestre 2011, pp 31-43,

ISSN 1954-3522

[8] H. Brenier, Les spécifications fonctionnelles : automatismes indus-

triels et temps réel, Dunod, France, 2001.

[9] M. Nkenlifack and E. Tanyi, ―HAD: Extending UML for the Model-

ing of Hybrid Control Systems‖, Poster in ECOOP, 17th European

Conference on Object-Oriented Programming, July 21-25, 2003,

Darmstadt University of Technology, Germany,

http://www.st.informatik.tu-

darmstadt.de:8080/ecoop/posters/index.phtml

[10] E. Tanyi and M. Nkenlifack, "An object oriented simulation platform

for hybrid control systems", Analysis and Design of Hybrid Systems

(ADHS), 2003, Elsevier IFAC Publications, Edited by S. Engell, H.

Gueguen & J. Zaytoon, ISBN 0-08-044094-0.

[11] E. Tanyi, T. Noulamo, M. Nkenlifack and J. Tsochounie, "A Multi-

Agent Design and Implementation of An Internet Based Platform for

the Remote Monitoring and Control of the Cameroon Power Net-

work", Special Issue on Advances in Information Engineering, Engi-

neering Letters, 13:2_18, ISSN: 1816-0948 (online version), 2006

http://www.engineeringletters.com/issues_v13/issue_2/index.htm

l.

[12] E. Tanyi and M. Nkenlifack, "An extended UML for the modeling of

hybrid control systems", in Burnham K. J., Haas O. C. L. (Editors),

Proc. of the sixteenth International Conference on Systems Engineer-

ing (ICSE2003), Coventry, UK, 9-11 September 2003, Vol. 2, pp. 681 -

686, ISBN 0-905949-91.

[13] F. Ayres, Théorie et applications du calcul différentiel et intégral, série

Schaum, McGraw-Hill Inc., New York, 1979.

[14] H. Gueguen and M. Lefebvre, "A comparison of mixed specification

formalisms", 4ème Conférence Internationale sur l’Automatisation

des Processus Mixtes (ADPM’00), 2000, Dortmund, Allemagne.

[15] R. David and H. Alla, Du Grafcet aux réseaux de Pétri, Paris, Hermès,

France, 1997.

[16] CEI-IEC (Commission Electrotechnique Internationale), "Grafcet

specification language for sequential function charts", Norme Interna-

tionale IEC 60848, 2002.

[17] J. Zaytoon and V. Carré-Ménétrier, "Grafcet et graphe d’états : com-

portement, raffinement, vérification et validation", JESA Vol. 33 N° 7,

PP 751-782, 1999.

[18] A. Manuel, P. Remelhe and S. Engell, "Structuring Discrete-Event

Models in Modelica", 4ème Conférence Internationale sur

l’Automatisation des Processus Mixtes (ADPM’00), 2000, Dortmund,

Allemagne.

[19] OMG-Web, www.omg.org, Site de l’OMG contenant le manuel de

référence UML 2.0, consulté en 2008.

[20] C. Delannoy, Programmer en Java, Eyrolles, France, 2001.

[21] M. Nkenlifack, "Spécifications orientées objets de circuits électro-

niques", Mémoire de fin de DEA, ENSP, Université de Yaoundé I,

Cameroun, 1999.

[22] S. Schach, Practical Software Engineering, IRWIN, Boston, 1992.

[23] M. Otter, Qualité des logiciels, Les techniques de l’ingénieur, Doc

H4028.

[24] P. Mosterman, « An Overview of Hybrid Simulation phenomena and

their support by Simulation Packages », F.W. Vaandrager & J. H. van

Schuppen (Eds.), Hybrid Systems: Computation and Control, Lecture

Notes in Computer Science 1569, pp 165-177, 1999.

